
NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

National Aeronautics and Space Administration

www.nasa.gov

Compiler Directive based GPU
Programming in C and Fortran

April 25, 2018
NASA Advanced Supercomputing

Division

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Outline

2

• Introduction
- GPU Architecture
- Concepts of GPU Programming

• OpenACC Basics
� Off-loading Work and Data to the GPU

• Using OpenACC on Pleiades GPU Nodes
• Learning by Example

� Sparse Conjugate Gradient Algorithm
o Expressing Parallelism

o Expressing Data Locality

• More OpenACC Constructs and Clauses
• What about OpenMP?
• Conclusion

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host
3

• CPU
� Fast clock (2.4-2.9 GHz on

Pleiades)

� Multiple cores (16-40 on Pleiades)

� Complex cores

o Large caches, complex branch
prediction, OOO execution,
multi-threading

� Parallelism

o Deep pipelines, multiple cores,
vector units

o SIMD length width 16-64

• GPU
� Slow clock (0.8-1.0 GHz)

� Thousands of cores

o 2880 SP cores on Pleiades

� Light weight cores:

o Small caches, little branch
prediction, in-order execution, multi-
threading

� Parallelism: Theoretically enormous!

o In practice limited the runtime
system particular to the GPU

o SIMT execution

Image courtesy of Nvidia:

CPU vs GPU

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Code block that runs
in parallel on the GPU

Flow of GPU Accelerated Computing

4

• GPU Accelerated Programming
� Identify and off-load compute kernels
� Express parallelism within the kernel
� Manage data transfer between CPU

and GPU

• Execution flow
1. Data copy from main to GPU memory
2. CPU initiates kernel for execution on

the GPU
3. GPU executes the kernel using GPU

memory
4. Data copy from GPU to main memory

• Programming Methods
Libraries

Directives

Cuda

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

• Example: PGI Compiler

� OpenACC target GPU

Vector => thread dimension x
Worker => thread dimension y
Gang => block of threads

� OpenACC target CPU

Vector => compiler’s auto-vectorization
Worker => not used
Gang => software thread

(like an OpenMP threads)

What is OpenACC?

5

• OpenACC 2.6 Specification released 2017

� High level parallel programming standard

suitable for accelerators

• OpenACC API consists of

- Compiler directives

- Runtime library routines

- Environment variables

• OpenACC provides support for

- Identifying accelerator kernels

- Express parallelism

- Manage data locality

• OpenACC supports 3-level parallelism

- Gang: 2D “block” of threads

- Worker: Row of threads

- Vector: Length of the row

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

OpenACC Directive Syntax

6

• Compiler Directive
� Programmer inserted hint/command for the compiler

• Directive Syntax
� Fortran

o Mostly paired with a matching end directive surrounding a
structured code block

!$acc directive [clause [,] [clause] …]
code

!$acc end directive

� C
o No end directive needed as the structured block is bracketed

#pragma acc directive [clause [,] [clause] …]
{

code
}

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

OpenACC Parallel and Loop Constructs

7

!$acc parallel
� User specifies a block of code

containing parallelism
� Compiler generates GPU kernel
� Kernel is started on a set of gangs

executing in parallel
� All gangs execute the same code
!$acc loop
� User identifies a loop for parallel

execution
� Gangs can have multiple threads
� Compiler distributes the loop

iterations across the threads

• The constructs are often
placed together

subroutine saxpy (n, a, x, y)
real :: x(:), y(:), a
integer :: n, I

!$acc parallel
!$acc loop

do i = 1, n
y(i) = y(i)+a*x(i)

end do

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Structured Data Management: Data Construct

8

• By default there is no data re-use between parallel loops
� This could lead to excessive data traffic

• Data regions:
� A region of the program within which data is accessible to the device.
� They can be explicitly defined to reduce data copies
� The data construct is used to mark such regions
!$acc data [clauses, …] / !$acc end data

• Example clauses:
copyin (list)
- Allocates memory on the GPU and copies data in when entering

the region, the values are not copied back
copyout (list)

- Allocates memory on GPU and copies the data to the host when
exiting the region

present (list)
- The data is already present on the GPU

List or variables

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Unstructured Data Management:
Enter/Exit Data Constructs

9

• Real life applications are not always a nicely structured
sequence of loops
� Subroutine calls
� C++ Structures or Fortran user defined types with dynamic arrays

• Unstructured data directives
!$acc enter data
� Allocate memory on the device for the remainder of the program

or until explicitly deleted
� Possible clauses are copyin and create

!$acc exit data
� Deallocate the memory on the device
� Possible clauses are copyout or delete

• Multiple enter/exit data constructs, branched across
different function calls are allowed

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

• Compilation
module load comp-pgi cuda

pgf90 -o cg.x –fast -ta=tesla,lineinfo -Minfo=acc cg.f90

pgcc -o cg.x -fast -ta=tesla,lineinfo -Minfo=acc cg.cpp

• Submit to GPU node
qsub -l select=1:ncpus=16:model=san_gpu -q k40

• Load the same modules as for compilation

• Optional: To obtain timing information set
setenv PGI_ACC_TIME

• Run the executable
./cg.x

• For more detailed performance information use the GPU profiler

nvprof/pgprof ./cg.x

10

load the PGI compiler
and CUDA

Compiling and Running on Pleiades

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

PGI Tool pgaccelinfo

11

Pleiades GPU Card

Get Information about your GPU Card

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Example: Sparse Conjugate Gradient

12

do while (norm .ge. tol)
…
call dot (r, r)
…
call waxpby (one, r, beta, p, p)
…
call matvec (a, p, ap)
…
call waxpby (one, x, alpha, p, x)
call waxpby (one, r, -alpha, ap, r)
…

enddo

Basic Structure

We focus on sparse
matrix-vector multiply

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

F90 Sparse Matvec Basic…

13

do while
…
!$acc parallel loop
do i=1,a%num_rows

tmpsum = 0.0d0
row_start = arow_offsets(i)
row_end = arow_offsets(i+1)-1

!$acc loop
do j=row_start,row_end
acol = acols(j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum +

acoef*xcoef
enddo
y(i) = tmpsum

enddo
…
enddo

matvec:
Accelerator kernel generated
Generating Tesla code

115, !$acc loop gang
120, !$acc loop vector(128)

Generating implicit reduction(+:tmpsum)
114, Generating implicit

copyin(acols(:),arow_offsets(1:a%num_rows+1),acoefs(:))
Generating implicit copyout(y(:a%num_rows)
Generating implicit copyin(x(:))

Reported Timings:

Total Iterations: 100 Time (s): 148.7404

pgf90 -fast -ta=tesla:cc35, lineinfo -Minfo=acc

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

F90 Sparse Matvec Better …

14

do while (norm .gt. tol) {
…

!$acc parallel loop
!$acc& present(x,y,arow_offsets,acols,acoefs)
do i=1,a%num_rows
tmpsum = 0.0d0
row_start = arow_offsets(i)
row_end = arow_offsets(i+1)-1

!$acc loop reduction(+:tmpsum)
do j=row_start,row_end
acol = acols(j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum +

acoef*xcoef
enddo
y(i) = tmpsum
enddo
…

enddo

Generating
present(arow_offsets(:),y(:),x(:),acols(:),acoefs(:))

Accelerator kernel generated
Generating Tesla code

120, !$acc loop gang ! blockidx%x
125, !$acc loop vector(128) ! threadidx%x

Generating reduction(+:tmpsum)

!$acc enter data copyin (x, a, a%row_offsets,a%cols,a%coefs)
!$acc enter data create (y)

After allocation and
initialization on the
host
Before the while loop
Can be in a different
function call

Reported Timings:
Total Iterations: 100 Time (s): 16.22556

type/structure

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

F90 Sparse Matvec Best!

15

do while
…

!$acc parallel loop &
!$acc& present(x,y,arow_offsets,acols,acoefs)&
!$acc& gang worker num_workers(32) vector_length(32)
do i=1,a%num_rows
tmpsum = 0.0d0
row_start = arow_offsets(i)
row_end = arow_offsets(i+1)-1

!$acc loop reduction(+:tmpsum)vector
do j=row_start,row_end
acol = acols(j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum +

acoef*xcoef
enddo
y(i) = tmpsum
enddo
..

enddo

Generating present(arow_offsets(:),y(:),x(:),acols(:),acoefs(:))
Accelerator kernel generated
Generating Tesla code

120, !$acc loop gang, worker(32) !blockidx%x threadidx%y
125, !$acc loop vector(32) !threadidx%x

Generating reduction(+:tmpsum)

!$acc enter data copyin (a,a%row_offsets,a%cols,a%coefs)
!$acc enter data create(y)

Reported Timings:
Total Iterations: 100 Time (s): 5.863531

Inner loop is only 27 iterations
Better to exploit parallelism
across workers and and vectors

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

PGI_ACC_TIME Output

16

matrix.F90 matvec NVIDIA devicenum=0 time(us): 26,910,583
114: compute region reached 101 times
114: kernel launched 101 times

grid: [65535] block: [128]
elapsed time(us): total=15,879,014
max=157,383 min=156,798 avg=157,217

114: data region reached 202 times
114: data copyin transfers: 17069

device time(us): total=26,284,387 max=1,686 min=4 avg=1,539
129: data copyout transfers: 404 device time(us): total=626,196

max=1,60 min=1,396 avg=1,549

matvec NVIDIA devicenum=0
time(us): 5,385,152
118: compute region reached 101 times

118: kernel launched 101 times
grid: [65535] block: [32x32]
device time(us): total=5,385,152 max=53,340 min=53,295 avg=53,318

elapsed time(us): total=5,387,929 max=53,369 min=53,322 avg=53,345
118: data region reached 202 times

MATVEC Basic

MATVEC Best

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

C++ Sparse Matvec Best

17

…
{
#pragma acc parallel loop present (row_offset,cols,Acoefs,xcoefs, ycoefs)\
gang worker num_workers(32) vector_length(32)

for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];

#pragma acc loop reduction(+:sum)
for(int j=row_start;j<row_end;j++) {

unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

}
ycoefs[i]=sum;

}
} while (norm > tol)

#pragma acc enter data copyin(A)
#pragma acc enter data \
copyin(A.row_offsets[:num_rows+1],A.cols[:nnz],A.coefs[:nnz])

Generating present(arow_offsets(:),y(:),x(:),acols(:),acoefs(:))
Accelerator kernel generated
Generating Tesla code

120, !$acc loop gang, worker(32)
125, !$acc loop vector(32)

Generating reduction(+:tmpsum)Reported Timings:
Total Iterations: 100 Time (s): 4.908

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Using CUDA Unified (Managed) Memory

18

!$acc parallel loop
do i=1,a%num_rows
tmpsum = 0.0d0
row_start = arow_offsets(i)
row_end = arow_offsets(i+1)-1
!$acc loop
do j=row_start,row_end
acol = acols(j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum + acoef*xcoef

enddo
y(i) = tmpsum
enddo

pgf90 -fast -ta=tesla:cc35, managed, lineinfo -Minfo=all

- Dynamically allocated data in
managed/unified memory

- Requires the PGI compiler,
- Might not always be profitable
- Might run into system errors

Reported Timings:
Total Iterations: 100 Time (s): 16.22556

• Technology that allows a single
pointer to be dereferenced either
CPU or GPU

• The CUDA driver will migrate pages
if required

• The PGI supports using this feature

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

The Kernels Construct

19

• #pragma acc kernels
� Compiler generates accelerator kernel(s) for the code region
� Parallelism is based on compiler dependence analysis
� Pro:

o The user is not responsible for expressing parallelism
o The loop directive is not necessary to distribute the work

o Code region may contain multiple loops

o Fortran array syntax can be correctly parallelized

� Con:
o Compiler might not be able to detect parallelism e.g you might want to

add the “restrict” keyword or the compiler flag “-Msafeptr”
subroutine saxpy (n, a, x, y)

real :: x(:), y(:), a
integer :: n, I

!$acc acc kernels
do i = 1, n

y(i) = 1.0
x(i) = 2.0

end do
do i = 1, n

y(i) = a * x(i) + y(i)
end do

!$acc end kernels

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Some Golden Rules for Optimization

20

• Optimizing memory traffic:
� Use the PGI compiler with the –ta=managed during development
� Use a profiler or the compiler to analyze data movement
� Add data directives to mimic the behavior

• For Nvidia GPUs the vector length to be a multiple of 32
� Ensures full use of warps
� Warps are groups of 32 GPU SIMT threads

• In general pick vector_length * num_workers >= 128
� Try hitting 128, 256, 512, 768, and 1024 and pick which is the best

• Good approach for the beginner: Use the kernels construct
first, then optimize using the parallel loop construct

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Performance Challenges

21

• Function calls in inner loops:
� Challenging for the compiler’s dependence analysis

o Possibly use $!acc routine compile routine for the device or in-line

• IF-Branches:
� Can get expensive if threads take different execution paths

o Move your branches up to a level in your code where all threads go down the
same code branch

o Avoid branches in inner loops

• Structures with complex and/or dynamic components
• Not much synchronization support
� Restructure code so that no synchronization is necessary

• Loop strides/memory layout
� Good memory access pattern is essential
� Inner loop should move along the fastest dimension
� Fastest dimension should be long

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

• OpenMP 4 provides constructs to off-load code to a device manage the data
• OpenMP did follow the example of OpenACC, but is more inclusive
• Important constructs and clauses:

#pragma omp target or $!omp target
� Create data environment and execute code region on the device
#pragma omp target map(map-type: list)
� Map a variable to/from the device data environment
#pragma teams distribute, parallel for, simd
� Distribute the work

What about Using OpenMP?

22

Can we do this in OpenMP?

#pragma acc parallel loop
for(int j = 1; j < n-1; j++{

#pragma acc loop reduction(max:error)
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]
+ A[j-1][i] + A[j+1][i]);

error = fmax(error, fabs(Anew[j][i] - A[j][i]));
} }

Laplace Solver in OpenACC

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Yes, We Can!

23

{
#pragma omp target teams distribute

for(int j = 1; j < n-1; j++) {
#pragma parallel for reduction(max:error)

for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]

+ A[j-1][i] + A[j+1][i]);
error = fmax(error, fabs(Anew[j][i] - A[j][i]));

} }

Well, we could…if we had a compiler… not yet available on Pleiades

Image courtesy of Nvidia

For more details check out the presentation by Jeff Larkin, Nvidia:
http://on-demand.gputechconf.com/gtc/2016/presentation/s6510-jeff-larkin-targeting-gpus-
openmp.pdf

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Summary

24

• Compiler directives provide a quick path to run codes on the
GPU

• Pro’s:
� Compiler directives allow single source code

o No need to maintain multiple code paths
� High level

o Abstract away device details, focus on expressing parallelism and data
locality

� Optimizations for device specifics left to compiler and device driver

• Con’s:
� Dependence on compiler quality

o OpenACC stable support by PGI, Cray, GNU gcc
o OpenMP support by Cray, GNU gcc, clang

• Benefit of effort to port to a GPU:
� Restructuring the code for the GPU often yields considerable performance

increase for the CPU

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

Using GPUs codes on Pleiades HECC KB

https://www.nas.nasa.gov/hecc/support/kb/using-gpu-nodes_298.html

OpenACC Home Page and Books

https://www,openacc.org

https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandra
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979

https://www.amazon.com/Programming-Massively-Parallel-Processors-
Hands/dp/0128119861

Jeff Larkin AMS Presentation

https://www.nas.nasa.gov/publications/ams/2015/04-21-15.html

• OpenMP Home Page and Books

http://www.openmp.org/

http://www.openmp.org/tech/using-openmp-next-step/

https://mitpress.mit.edu/books/using-openmp

• PGI Compiler HECC KB

https://www.nas.nasa.gov/hecc/support/kb/PGI-Compilers-and-Tools_365.html
25

References

https://www.nas.nasa.gov/hecc/support/kb/using-gpu-nodes_298.html
https://www,openacc.org/
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0128119861
https://www.nas.nasa.gov/publications/ams/2015/04-21-15.html
http://www.openmp.org/
http://www.openmp.org/tech/using-openmp-next-step/
https://mitpress.mit.edu/books/using-openmp
https://www.nas.nasa.gov/hecc/support/kb/PGI-Compilers-and-Tools_365.html

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

How can I run MPI + OpenACC codes on Pleiades?

This is described on slide 28 in the backup material

How does the K40 compare to other GPUs?

The new P100 and V100 GPUs are 2-4X faster than the K40 so one should not make a final performance
judgment using the K40s

Why do you have to copy the whole data structure a and its elements a%*?

“ deep data copies” are currently not supported by the PGI compiler. The OpenACC standard did add
manual deep copy (attach/detach) to the 2.6 Spec. A current proposal is here:
https://www.openacc.org/sites/default/files/inline-files/TR-16-1.pdf. In Fortran, there is a deep-copy flag
(-ta=tesla:deepcopy) that you can try. It’s a PGI extension and not part of OpenACC. OpenMP 5.0
may include support for deep copies of pointer chasing structures via user defined mappers, which
can be used in the data clause.

Can I have calls to math intrinsic functions (eg sin, cos) in an OpenACC parallel region?

Basic routines like sin, cos, exp, which are part of the language are on the GPU and work with OpenACC.
More discussion on calls within parallel regions is on slide 21.

PGI does not support OpenMP target off-load. How can I add off-load to my existing OpenMP code?

You could use the PGI compiler and add the ”-mp” flag in addition to –ta=tesla:cc35. This will enable both
directives.

26

Q&A

https://www.openacc.org/sites/default/files/inline-files/TR-16-1.pdf

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host
27

type matrix

sequence

integer :: num_rows

integer :: nnz

integer, pointer ::
row_offsets(:)

integer, pointer :: cols(:)

real(8), pointer :: coefs(:)

end type matrix

struct matrix {

unsigned int num_rows;

unsigned int nnz;

unsigned int *row_offsets;

unsigned int *cols;

double *coefs;

};

NASA High End Computing Capability Question? Use the Webex chat facility to ask the Host

• Compilation
module load comp-pgi cuda mpi-hpe
mpif90 -o cg.x –fast -ta=tesla,lineinfo -Minfo=acc cg.f90
setenv MPICC_CC pgcc
mpicc -o cg.x –fast -ta=tesla,lineinfo -Minfo=acc cg.cpp

• Submit to GPU Nodes
qsub -l select=4:ncpus=16:model=san_gpu -q k40

• Load the same modules as for compilation
• Set environment variable to tell MPI that CUDA is being used

setenv MPI_USE_CUDA 1
setenv MPI_SHEPHERD 1

• Run the executable
mpiexec –np 4 ./cg.x

28

Multi-node runs on Pleiades

